Section A: Pure Mathematics

The points S, T, U and V have coordinates (s, ms), (t, mt), (u, nu) and (v, nv), respectively. The lines SV and UT meet the line y = 0 at the points with coordinates (p, 0) and (q, 0), respectively. Show that

$$p = \frac{(m-n)sv}{ms - nv},$$

and write down a similar expression for q.

Given that S and T lie on the circle $x^2 + (y - c)^2 = r^2$, find a quadratic equation satisfied by s and by t, and hence determine st and s + t in terms of m, c and r.

Given that S, T, U and V lie on the above circle, show that p + q = 0.

2 (i) Let $y = \sum_{n=0}^{\infty} a_n x^n$, where the coefficients a_n are independent of x and are such that this series and all others in this question converge. Show that

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} ,$$

and write down a similar expression for y''.

Write out explicitly each of the three series as far as the term containing a_3 .

(ii) It is given that y satisfies the differential equation

$$xy'' - y' + 4x^3y = 0.$$

By substituting the series of part (i) into the differential equation and comparing coefficients, show that $a_1 = 0$.

Show that, for $n \ge 4$,

$$a_n = -\frac{4}{n(n-2)} \, a_{n-4} \,,$$

and that, if $a_0 = 1$ and $a_2 = 0$, then $y = \cos(x^2)$.

Find the corresponding result when $a_0 = 0$ and $a_2 = 1$.

3 The function f(t) is defined, for $t \neq 0$, by

$$f(t) = \frac{t}{e^t - 1}.$$

- (i) By expanding e^t , show that $\lim_{t\to 0} f(t) = 1$. Find f'(t) and evaluate $\lim_{t\to 0} f'(t)$.
- (ii) Show that $f(t) + \frac{1}{2}t$ is an even function. [Note: A function g(t) is said to be *even* if $g(t) \equiv g(-t)$.]
- (iii) Show with the aid of a sketch that $e^t(1-t) \le 1$ and deduce that $f'(t) \ne 0$ for $t \ne 0$. Sketch the graph of f(t).
- 4 For any given (suitable) function f, the Laplace transform of f is the function F defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt \qquad (s > 0).$$

- (i) Show that the Laplace transform of $e^{-bt}f(t)$, where b > 0, is F(s + b).
- (ii) Show that the Laplace transform of f(at), where a > 0, is $a^{-1}F(\frac{s}{a})$.
- (iii) Show that the Laplace transform of f'(t) is sF(s) f(0).
- (iv) In the case $f(t) = \sin t$, show that $F(s) = \frac{1}{s^2 + 1}$.

Using only these four results, find the Laplace transform of $e^{-pt} \cos qt$, where p > 0 and q > 0.

5 The numbers x, y and z satisfy

$$x + y + z = 1$$

 $x^{2} + y^{2} + z^{2} = 2$
 $x^{3} + y^{3} + z^{3} = 3$.

Show that

$$yz + zx + xy = -\frac{1}{2}.$$

Show also that $x^2y+x^2z+y^2z+y^2x+z^2x+z^2y=-1\,,$ and hence that

$$xyz = \frac{1}{6}.$$

Let $S_n = x^n + y^n + z^n$. Use the above results to find numbers a, b and c such that the relation

$$S_{n+1} = aS_n + bS_{n-1} + cS_{n-2} ,$$

holds for all n.

6 Show that $\left|e^{i\beta}-e^{i\alpha}\right|=2\sin\frac{1}{2}(\beta-\alpha)$ for $0<\alpha<\beta<2\pi$. Hence show that

$$\left|e^{i\alpha}-e^{i\beta}\right|\left|e^{i\gamma}-e^{i\delta}\right|+\left|e^{i\beta}-e^{i\gamma}\right|\left|e^{i\alpha}-e^{i\delta}\right|=\left|e^{i\alpha}-e^{i\gamma}\right|\left|e^{i\beta}-e^{i\delta}\right|,$$

where $0 < \alpha < \beta < \gamma < \delta < 2\pi$.

Interpret this result as a theorem about cyclic quadrilaterals.

$$f_0(x) = \frac{1}{1+x^2}$$
 and $f_{n+1}(x) = \frac{df_n(x)}{dx}$.

Prove, for $n \ge 1$, that

$$(1+x^2)f_{n+1}(x) + 2(n+1)xf_n(x) + n(n+1)f_{n-1}(x) = 0.$$

(ii) The functions $P_n(x)$ are defined for n = 0, 1, 2, ..., by

$$P_n(x) = (1+x^2)^{n+1} f_n(x)$$
.

Find expressions for $P_0(x)$, $P_1(x)$ and $P_2(x)$.

Prove, for $n \ge 0$, that

$$P_{n+1}(x) - (1+x^2)\frac{dP_n(x)}{dx} + 2(n+1)xP_n(x) = 0,$$

and that $P_n(x)$ is a polynomial of degree n.

8 Let m be a positive integer and let n be a non-negative integer.

(i) Use the result $\lim_{t\to\infty} e^{-mt}t^n = 0$ to show that

$$\lim_{x \to 0} x^m (\ln x)^n = 0.$$

By writing x^x as $e^{x \ln x}$ show that

$$\lim_{x \to 0} x^x = 1.$$

(ii) Let $I_n = \int_0^1 x^m (\ln x)^n dx$. Show that

$$I_{n+1} = -\frac{n+1}{m+1}I_n$$

and hence evaluate I_n .

(iii) Show that

$$\int_0^1 x^x dx = 1 - \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^3 - \left(\frac{1}{4}\right)^4 + \cdots$$

Section B: Mechanics

- A particle is projected under gravity from a point P and passes through a point Q. The angles of the trajectory with the positive horizontal direction at P and at Q are θ and ϕ , respectively. The angle of elevation of Q from P is α .
 - (i) Show that $\tan \theta + \tan \phi = 2 \tan \alpha$.
 - (ii) It is given that there is a second trajectory from P to Q with the same speed of projection. The angles of this trajectory with the positive horizontal direction at P and at Q are θ' and ϕ' , respectively. By considering a quadratic equation satisfied by $\tan \theta$, show that $\tan(\theta + \theta') = -\cot \alpha$. Show also that $\theta + \theta' = \pi + \phi + \phi'$.
- A light spring is fixed at its lower end and its axis is vertical. When a certain particle P rests on the top of the spring, the compression is d. When, instead, P is dropped onto the top of the spring from a height h above it, the compression at time t after P hits the top of the spring is x. Obtain a second-order differential equation relating x and t for $0 \le t \le T$, where T is the time at which P first loses contact with the spring.

Find the solution of this equation in the form

$$x = A + B\cos(\omega t) + C\sin(\omega t),$$

where the constants A, B, C and ω are to be given in terms of d, g and h as appropriate.

Show that

$$T = \sqrt{d/g} \left(2\pi - 2 \arctan \sqrt{2h/d} \right)$$
.

- A comet in deep space picks up mass as it travels through a large stationary dust cloud. It is subject to a gravitational force of magnitude Mf acting in the direction of its motion. When it entered the cloud, the comet had mass M and speed V. After a time t, it has travelled a distance x through the cloud, its mass is M(1 + bx), where b is a positive constant, and its speed is v.
 - (i) In the case when f = 0, write down an equation relating V, x, v and b. Hence find an expression for x in terms of b, V and t.
 - (ii) In the case when f is a non-zero constant, use Newton's second law in the form

force = rate of change of momentum

to show that

$$v = \frac{ft + V}{1 + bx} \,.$$

Hence find an expression for x in terms of b, V, f and t.

Show that it is possible, if b, V and f are suitably chosen, for the comet to move with constant speed. Show also that, if the comet does not move with constant speed, its speed tends to a constant as $t \to \infty$.

Section C: Probability and Statistics

12 (i) Albert tosses a fair coin k times, where k is a given positive integer. The number of heads he gets is X_1 . He then tosses the coin X_1 times, getting X_2 heads. He then tosses the coin X_2 times, getting X_3 heads. The random variables X_4 , X_5 , ... are defined similarly. Write down $E(X_1)$.

By considering $E(X_2 \mid X_1 = x_1)$, or otherwise, show that $E(X_2) = \frac{1}{4}k$.

Find
$$\sum_{i=1}^{\infty} \mathrm{E}(X_i)$$
.

(ii) Bertha has k fair coins. She tosses the first coin until she gets a tail. The number of heads she gets before the first tail is Y_1 . She then tosses the second coin until she gets a tail and the number of heads she gets with this coin before the first tail is Y_2 . The random variables Y_3, Y_4, \ldots, Y_k are defined similarly, and $Y = \sum_{i=1}^k Y_i$.

Obtain the probability generating function of Y, and use it to find $\mathrm{E}(Y)$, $\mathrm{Var}(Y)$ and $\mathrm{P}(Y=r)$.

13 (i) The point P lies on the circumference of a circle of unit radius and centre O. The angle, θ , between OP and the positive x-axis is a random variable, uniformly distributed on the interval $0 \le \theta < 2\pi$. The cartesian coordinates of P with respect to O are (X,Y). Find the probability density function for X, and calculate Var(X).

Show that X and Y are uncorrelated and discuss briefly whether they are independent.

(ii) The points P_i (i = 1, 2, ..., n) are chosen independently on the circumference of the circle, as in part (i), and have cartesian coordinates (X_i, Y_i) . The point \overline{P} has coordinates $(\overline{X}, \overline{Y})$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Show that \overline{X} and \overline{Y} are uncorrelated.

Show that, for large n, $P\left(|\overline{X}| \leqslant \sqrt{\frac{2}{n}}\right) \approx 0.95$.